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Aerodynamic sound generation in a pipe 
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The paper deals with the problem of estimating the sound field generated by a 
limited region of turbulence in an infinitely long, straight, hard-walled pipe. 
The field is analysed in a co-ordinate system moving with the assumed uniform 
mean flow, and the possibility of eddy convection relative to that reference 
system is considered. Large-scale turbulence is shown to induce plane acoustic 
waves of intensity proportional to the sixth power of flow velocity. The same is 
true of small-scale turbulence of low characteristic frequency. In  both cases 
convective effects increase the acoustic output and distribute the bulk of the 
energy in a mode propagating upstream against the mean flow. Small-scale 
turbulence of higher frequency excites more modes, the sound increasing with 
very nearly the eighth power of velocity (U7.7) as soon as the second mode is 
excited. In  the limit, when more than about 20 modes are excited, the energy 
output is unaffected by the constraint of the pipe walls, increasing with the 
eighth power of velocity, and being substantially amplified by convective motion. 

1. Introduction 
This paper is concerned with the sound field generated by a turbulent flow in 

an infinitely long straight pipe. It is chosen infinitely long so as to avoid standing 
waves. The motion can be analysed in a co-ordinate system moving downstream 
with the uniform mean flow as a sum of normal modes of oscillation, the types of 
mode present being determined by the cross-sectional shape and the boundary 
conditions. Although the field of a single mode is thus completely determined, 
more complex fields involving many modes will have general features independent 
of the particular geometry, provided the boundary conditions are of the same 
type. A hard-walled pipe of square cross-section is chosen here. A finite volume of 
fluid within the pipe is supposed to be in turbulent motion and the problem is to 
determine its sound field. Not all the excited modes propagate as sound. Some 
decay exponentially with axial distance, and we shall examine the sound field 
at  points sufficiently far from the source that the effect of the decaying modes is 
negligible. 

The acoustic power in the pipe can be determined from a knowledge of the 
pressure field and this is calculated for two types of turbulent motion. In  
the first, the eddies are so large that the motion is completely correlated across 
the pipe and all the sound is in the form of a plane wave propagating in the 
axial direction. The second type of motion is a statistically slowly varying flow 
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with an eddy correlation length small compared with the cross-sectional pipe 
dimension. 

The effects of eddy convection upstream relative to the mean flow are con- 
sidered, and these are shown to augment the radiation efficiency of the turbulence. 
When only the plane wave mode is excited, convective effects also account for a 
preferential upstream radiation, but the effect tends to disappear when many 
acoustic modes are excited. 

The analysis is quite general in the limiting cases of high and low frequencies, 
but for the intermediate frequency range, which, for small scale turbulence, 
transpires to be extensive and to encompass a wide category of subsonic flows, 
a more specific treatment is necessary. Then eddy convection effects are neglected 
and the turbulence is supposed isotropic with a particular form of cross spectral 
density. The example shows how the asymptotic low speed limit, when the sound 
energy increases as the sixth power of velocity, connects with the high frequency 
limit when the sound field is virtually unaffected by the presence of the constrain- 
ing walls. 

2. Equation for the sound field 
Inviscid flow within an infinitely long straight pipe of square cross-sectional 

shape and side length b is considered. Rectangular co-ordinates moving with the 
uniform mean flow are chosen with origin on one edge of the pipe, y1 and y2 being 
co-ordinates in the cross-sectional plane, and y3 in the axial direction. 

The equation governing the sound field in the pipe is Lighthill’s form of the 
combined continuity and momentum equations (Lighthill 1952), 

p is the density, T is time, c is the velocity of sound and is the turbulence stress 
tensor. denotes the expression ( p  - c2p) aij +pu,uj, where p is the pressure, 
Sii the Kronecker delta, and ui is the particle velocity in the i-direction relative 
to the mean flow. It is assumed that turbulence occupies a limited region of the 
pipe. Outside this region where the fluctuating velocities are assumed small, 
the product puiui is essentially zero. Also, for small scale adiabatic wave motion, 
the pressure fluctuation is balanced by c2p so that the turbulence stress tensor 
vanishes outside the turbulence. 

The boundary conditions to be applied to ( 1 )  are that all waves are outgoing 
at infinity, and that the normal velocity vanishes at the walls. From the equation 
for the normal component of momentum 

the second condition is equivalent to the vanishing at  the walls of the normal 
derivative of pressure, and, when p = c2p, density. 

Equation (1)  can be solved by means of a Green’s function G(x ,  tl y, T) defined 
as the solution of 

(2) ~- a2G c2V2G = - S(x - y) &(t - T )  a+ 
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- = 0 on the boundaries. 
aG 

with 
an 

The Fourier transform of G with respect to time, written g(x, ylo) satisfies the 
equation 

(3) - w2g - c2v2g = - 6(x - y) 

and is related to G by the inverse transform 

g(x,y]w)exp(-iw(t-7))do. (4) 

The Green's function is expressed as a sum of the normal modes of oscillation, 
these being sines and cosines in a square pipe. Only the cosine terms are necessary 
here because the normal derivatives vanish at the pipe walls. The (m, n )  mode 
is written in the form 

n=y 2 cos cos --fmn(y3), 
b b 

where 'rn and n are non-negative integers. 

(3) by substitution 
The function g is the sum of all such modes. fmn(y3) can be determined from 

We multiply both sides of this equation by 

m=y1 cos mny2 
b 

cos __ 
b 

and integrate over the cross-sectional plane to produce a reduced equation 

where 

mnxl nnx2 1 
cos __ 

1 
b '  

Cmn(X1, x 2 )  = cos __ 
b2en E ,  b 

and en = 1 if n = 0, 

= &  if n > 0 .  

A solution of (5) with outgoing waves at infinity is (Morse & Feshbach 1953, 
p. 810) 

By summing all these terms to produce g ,  and then inverting the transform 
according to (4), we obtain the Green's function G satisfying (2) and hard-walled 
boundary conditions, 

xexp(-io(t-~))do. (8) 
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We can now superpose the elementary solutions G and express the formal solu- 
tion of (1)  for the density perturbation in the pipe in the form 

where the volume integral is over all space and the time integral ranges from 
- 00 to + 00. The Green's function chosen is an exact form, and, with the boundary 
conditions specified, ensures that the solution involves no surface integrals. Thus 

For large positive values of x8, the exponential term is 

exp {ikmn(x3 - y3) - iw(t - 7)). 

The term k,,,, defined by (6), denotes the wave-number in the axial direction. 
For propagating wave motion this must be real, which it is above the cut off 
frequency which we denote by w,, 

For frequencies less than the cut-off frequency, kLn is negative and the pressure 
in that mode decays exponentially away from the source. It is convenient to 
split the w integration in (9) into a propagating and a non-propagating part, 

In  the range o2 < wk,, k,, is imaginary. At large distances from the source, this 
part of the o integration can be ignored. The remaining range corresponds to all 
real k,,, so that the propagating part of the w integration in (9) can be written 

A physical interpretation of the pressure field becomes apparent if the sound 
pressure prnn(x,w) in a particular mode a t  frequency w is considered. The r 
integration in (9) can be performed and the resulting Pourier transform of the 
source field (y, r )  is denoted by Oij(y, 0). pmn(w) is thus defined by the equation 

x ~ X P  ( - ikrnn~3)-  (12) 

This expression for pmn is the sum of four rays of plane sound waves, each ray 
having a sound pressure P$~(x ,  w) ,  where 4, the number of the ray equals 1, 2 , 3  
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or 4. This is made clear by expressing the cosine terms as the sum of four exponen- 
tials. The case, 4 = 1 is chosen to correspond to the exponential term 

1 imn inn 

in the integrand. The other rays correspond to other combinations of A m and I: n. 
If the y axes are rotated to new axes q’, where T,I~ makes angles cos-I (mnclbo) and 
cos-1 (nnclbw) with the yl and y2 axes respectively (the 7; and 7;; axes can be chosen 
arbitrarily) the exponential in the q5 = 1 ray is exp ( -~T, I&/c)  and the pressure 
phn is a plane wave travelling with velocity c along the T , I ~  axis. Thus the strength 
of each ray is that generated by the turbulence in an unbounded space, and this is 
easily computed by the usual techniques of aerodynamic noise theory. We shall 
postpone this computation until we have found a statistical mean value, but we 
shall make use of the fact that a particular mode can be identified quite simply 
with a particular ray that would be generated were the turbulence not contained 
in the pipe. 

3. Acoustic power 
The acoustic power, or the rate a t  which energy is propagating down the 

pipe at  a particular frequency w,  is the integral over the cross-section of the 
downstream component of the intensity vector, pU. This we denote by P(w), 

where u3 is the axial particle velocity of the disturbance and the bar signifies a 
mean value. E is the small normalizing constant that enters when computing a 
spectrum level from the product of Fourier transforms. u3 has a similar form to 
the pressure, p, and is determined from the linearized momentum equation 

aP 8% -+p- = 0. 
ax, at 

In  Fourier components, this becomes 

The integration over the cross-sectional plane ensures that the correlation over 
different modes is zero, and that the total power carried by the flow is the sum 
ofthe power in each mode. The power in the (m, n) mode, Pm,(w) is obtained from 
(12)  to (14). In  the expression for the complex conjugate of the velocity transform, 
the frequency is denoted by - w,  and the negative sign of the square root is to 
be selected when writing the wave-number kmn. The sound power in a mode 
then has the form; 

49 Fluid Mech. 32 
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The sound power is seen to be constant as is to be expected in a hard-walled 
pipe where energy is conserved. 

It is assumed that the source field is locally homogeneous so that the correlation 
function is a function only of the displacement A = Z-y. The source being 
considered is a double divergence, so that the correlation function is a quadruple 
divergence of the correlation function of the stress tensor, Rijkl, 

Equation (15) for the sound power in a mode now takes the form, 

In  general, the limits on the A integration are functions of y.  However, the 
integration is straightforward in two particular limiting cases and these we will 
now consider. 

In the first case, the eddies in the pipe are so large that the motion is completely 
correlated across the pipe. Thus, Rijkl is constant in the cross-sectional plane and 
the integration in the A, and A, variables is over the cosine terms. The integral is 
non-zero only when m = n = 0. Thus the only sound generated is in the form of a 
plane wave propagating in the axial direction with velocity c .  Only one element 
of the correlation tensor yields a non-vanishing integral in this case, and that 
corresponds to the longitudinal quadrupoles with axis parallel to the pipe axis. 
The acoustic power generated by large-scale turbulent motion is thus very simply 
described as 

where V is written for the volume occupied by the turbulence. The total power 
P, is 'sg 27r -a P,,(w)dw, 

and the integration can be absorbed in producing the cross-correlation function 

Now if the turbulence and the turbulent region is moving at  Mach number M ,  
upstream, relative to the moving uniform fluid far downstream in the pipe, the 
correlation function is more naturally specified in terms of a moving co-ordinate 
system, = h3 + M,cT. The moving axis turbulence correlation tensor 
Rm(hT, 7 )  = R(h3, 7 ) ,  then enters the equation which can be written in a moving 
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axis form through Lighthill’s transformation (Lighthill 1952), 

The sound power moving upstream is given by precisely the same expression 
with M, replaced by - M,, so that the ratio of downstream power to upstream 
power is 1 - ~ , 4  IM 
provided retarded time effects are negligible. 

The dimensional form of the power can be obtained by setting ab to corres- 
pond to a turbulence length scale and PU/b to a frequency. Rrm will be pro- 
portional to cr4p2U4, (T being the ratio of the characteristic turbulent velocity 
to the mean velocity, so that 

T7 

The + and - sign correspond to dognstream and upstream conditions res- 
pectively, and M has been written for the flow Mach number U / c .  

This exceeds the power radiated by the same turbulence in free space by a 
factor that includes M-2,  so that the restraining influence of the walls consider- 
ably augments the radiation efficiency of large-scale turbulence. This is precisely 
the conclusion one would make by applying Curle’s (1955) dimensional analysis 
to the model and regarding the problem as a three-dimensional one in the presence 
of rigid boundaries. 

The second limiting type of turbulent motion we consider has eddies small 
compared to the pipe dimension. The tubulence is assumed slowly varying so 
that it can be treated as locally homogeneous. For sufficiently small correlation 
lengths, the limits on the A integration in (17) can be taken as & co, and the 
y and A integrations performed separately. Edge effects from the flow near the 
wall are negligible. This is because the source function cj vanishes at the walls 
and all eddies must have zero strength there. The volume of eddies near the 
walls compared with the total volume of the source region is of the order 
ab2/b2, where ab is the effective correlation length. This is negligible for sufficiently 
small a. 

The y integration can now be performed independently in (17) ,  and is affected 
by simply replacing the integral by V, homogeneous turbulent flow being assumed 
to exist over a source volume V ,  

mnh, 
b 

nnh, exp ( - ikm,h3) 
. ( 2 2 )  cos- __ x cos- 

b Ic,, UP 

The cosine terms can again be expanded into four exponential terms, and the 
sound power in the pipe expressed as the sum of the sound power along four rays. 
Again we label the rays by 4 = 1 ,2 ,3 ,4  and call the new co-ordinates obtained 

49-2 
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by simple rotation of the X system q". Equation (22) can then be written in terms 
of the inclined co-ordinate systems as the sum of the power in the four rays, 

R$jkl(q$, w )  = Rij,(X, w )  is the correlation tensor expressed as a function of the 
inclined co-ordinate system, and is the direction parallel to the ray propaga- 
tion direction. 

The limiting cases of this result are simply evaluated. In  the first case, if the 
characteristic frequencies are low (i.e. w < m / b )  only the zero order mode can 
propagate and (23) can be transformed by integration by parts to a form almost 
identical with (18), 

P,,(w) = - OJ' - - jrn / I O r n f r n  R3333(X,w)exp( - i % A 3 )  dA,dA,dh,. (24) 
4b2c2pc --m --m 

The integration over A, and A, yields a multiplier (ab),, so that the sound of the 
small-scale turbulence a t  low enough frequency is seen, by comparison with (18), 
to be precisely a2 times the sound genfrated by very large-scale turbulence. 
Consequently we can obtain the dimensional trends on the power variation by 
multiplying (21) by a2, 

P N  4]1t-M,I4b U3M30-4a3p. (25) 

Again the + and - signs refer to the power propagating downstream and up- 
stream respectively. 

The second limiting case is when the frequencies are high enough relative to 
m / b ,  that all modes propagate. Then the total power travelling down the pipe 
is exactly equal to the total power that would be radiated into the downstream 
half space were the turbulence radiating in a uniform acoustic medium in the 
absence of the pipe. This can be shown as follows. 

Provided the modes are sufficiently numerous, the summation can be viewed 
as an integral over a continuous modal distribution of modal density unity. A 
doubly infinite range of both m and n is necesssary, the positive and negative 
parts corresponding to the various rays we designate by q5. The total power 
propagating down the pipe is equal to the integral of the power spectral density 
over frequency, and from (23) can be written, 

(26) 
The frequency integral generates in the integrand a quadruple divergence of 
the stress tensor cross-correlation a t  the retarded time associated with wave 

propagation in the direction +, h 
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Now the intensity I ( r ,  4) that would arise at  large distance r and direction 8, 
were the turbulence radiating in free space, is 

Y1 

YZ 
A h  

FIGURE 1. Diagram illustrating the co-ordinate systems and the ray direction 4. 4 ranges 
over the +ve y, half space as m and .n vary over ( -  co, a). 

Consequently, the power radiated down the pipe can be expressed directly in 
terms of the hypothetical intensity field that would be generated by the turbu- 
lence in free space 

a, n2cr2 
p =  J:mJ-mK I ( r ,  4)dmdn. (29) 

A 

The direction r# is determined by m and n, as is illustrated in figure 1, and an area 
element over the surface of a sphere at constant r is r2 sin Ode& This in turn is 
equal to 

n2C 
b2ulcm, r2dmdn ,  

so that the integrals in (29) can be written as a surface integral over the down- 
stream ( + ve y3)  hemispherical surface, 

This surface integral of the outward component of the intensity vector is the 
total power radiated by the turbulence into the downstream half space, so that 
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the equality is a statement that the total power generated by the turbulence in a 
pipe is completely unaffected by the presence of the pipe, provided that the 
frequencies are sufficiently high relative to nclb. This statement is true whether 
or not there are convective effects, so that the effects of source motion can be 
carried over from the three-dimensional problem. Since the convective effects 
vary with ray direction, they depend on the quadrupole type, each type giving 
different emphasis to the directions coincident with the quadrupole axes. In 
isotropic turbulence Lighthill (1  952) showed that convective effects increase 
the radiated power by a factor, 

1 + 2ME + M 3 5  
(1  - ~ 3 5  . 

~ ________ 

In this case the radiation is more or less evenly split into parts propagating up 
and down the pipe, though relative to the fluid the majority radiates upstream. 
This is because only a limited number of upstream propagating rays have an 
axial propagation speed in excess of the flow velocity and can avoid being swept 
downstream with the flow. 

In this high frequency limit, a dimensional analysis applied to (28) and (30), 
together with the known effects of source convection shows that the total radiated 
power varies like 

p + + iM; __- p U3M5a4a3P4. 
(1-iw35 4b 

At intermediate frequencies the field is very much a function of the precise number 
of modes contributing to the radiation. It is much simpler to discard the effects of 
source convection in that case and to regard the turbulence as moving with the 
stream. We recognize that the integral in (23) is simply a Fourier transform 

operation which produces the power spectral density tensor Hijkl(w/cc$, w )  
(Ffowcs Williams 1963), so that (23) can formally be written as 

It being the direction cosine of the i-direction in the Cartesian set formed on the 

pipe axes onto the $ ray, a ray parallel to the unit vector +. 
Certain assumptions can now be made about the form of the power spectral 

density. H is, by definition, an even function of wave-number. We shall assume 
that it is also an even function of each component of wave-number in a Cartesian 
set based on the pipe. This assumption does not seem unreasonable, implying 
that if principal axes of correlation exist, they are coincident with the Cartesian 
axes of the pipe. When this is so, the summation over the four rays ensures that 
the result is zero unless i,  j, k and I are equal in pairs. 

Pm,(w) is the power generated in one mode at  frequency w by a source distribu- 
tion of quadrupoles. The dimensional form of P,,, depends on the type of quad- 
rupoles. Hijkl is a four-dimensional Fourier transform and is of the order of 

A 

magnitude of 
a3b4 

a4(p U2)2 pu . 
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From (32), Pmn(w), thus has an order of magnitude given by the proportionality, 

fijkl being a non-dimensional tensor characterizing the type of quadrupoles 
present in the pipe. km, has been set proportional to w/c .  This order of magnitude 
ofthe source is modified by the directional term l $ ~ l ~ Z $ .  For a quadrupole with 
an axis in the cross-sectional plane, the direction cosine is either mnclwb or 
nnclwb. For a quadrupole with an axis parallel to the pipe axis, it is km,c/w, 
which we take as unity. Because i, j ,  k and I ,  must be equal in pairs, the direc- 
tional factor thus introduces into (33) a factor 

c4 C2 

b4w4' b2w2 
or 1, ~ _ _  

respectively, depending as the quadrupole has axes wholely in the cross-sectional 
plane, say Tll; is a lateral quadrupole T,, with one of either i o r j  equal to 3;  or is 
a T33 quadrupole with axes parallel to the pipe axis. 

This directional attenuation with increasing frequency is easily explained using 
the expansion into rays of plane waves. In  a given mode the angle made by the 
direction of propagation of the rays and the pipe axis decreases as the frequency 
increases. Thus the direction of sound propagation makes a larger angle with a 
quadrupole axis in the cross-sectional plane, so decreasing the efficiency of 
propagation. 

If the mean flow velocity dependence of the frequency is introduced the direc- 
tional effect is masked as it is overwhelmed by the increase in source efficiency. 
P,, is then of the order of magnitude of 

0-4 a3 014 a3 G-4 
- pU2M-*V p", EpU2MV - or -pU2M3Va3P, 16 16 P 

respectively, for the three types of quadrupoles considered above. For a specific 
increase in velocity, the increase in the magnitude of the sound generated in one 
mode is then greatest for a T33 quadrupole. 

4. Sound power from isotropic turbulence 
In  isotropic turbulence, the sound power has no preferred direction and the 

source spectral function in (32) is a function of the modulus of the wave vector 
and frequency only. If a b  and (PO/b)-l, respectively, again denote the typical 
turbulence length and time scales, a suitable form for the spectrum is 

@l$@ZfHijkl (: 4 , w )  = r r4p2U3Eexp(  -- 1 w  (-)2a2b2) exp ( w2 b2 (34) P 4n c 

The exponential terms have, respectively, a wave-number and frequency 
dependence. At sufficiently low Mach numbers, the frequency term in the ex- 
ponential dominates, and will indeed be considerably larger than the wave- 
number term at all subsonic speeds. In  shear flow turbulence, P - +a (Davies, 
Fisher & Barratt 1963). In  pipe flow ,b' will, in general, be smaller since the eddies 
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have a longer lifetime, and will always be such that the important dependence 
of the spectrum function is on frequency. The spectrum function can conse- 
quently be written as 

80 

40 

20 

Q lo 

4 

2 

1 
0 1  02 04 08 1 2 4 8 

PM 
FIGURE 2.  Diagram of Q vcrsus PM together with the number of modes needed for 99 yo 

accuracy. 

The total power generated is found by integrating (32) for 1/(277) Pmn(w) over all 
frequencies and summing the power in all modes. For isotropic turbulence of the 
form chosen, and by making use of expression (1 1) for the change of variable in 
the integration, the total power P is 

The integration is straightforward and leads to the equation 
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A t  low Mach numbers, or low typical frequencies, PM is small and 

777 

- (m2 + n2) - 
4P2M2 " I  

is negligible whenever (m2+n2) + 0. Then only the first, or plane wave mode is 
significantly excited and the sound power increases as the sixth power of flow 
velocity, being given explicitly by the expression 

which compares directly with (25) .  
On the other hand, at high Mach number, or high typical frequencies, many 

modes contribute to the sum and the summation can be approximated by an 
integral over the modes, the modal density being unity. The sound power then 
increases with the eighth power of flow velocity, being equal to 

and this compares directly with (31). 

figure 2. This is a plot of Q versus PM,  Q being defined from (35) as 
The exact summation together with these limiting forms is illustrated in 

The number of modes needed to represent the answer within 1 % is also indicated 
in figure 2 ,  from which it can be seen that the summation is effectively complete 
when twenty modes become active. Thereafter the high frequency limit of (31) 
and (37) is applicable. This evidently becomes a good approximation whenever 
PM exceeds a value of about eight though the variation of sound power with 
velocity is very close to Ua above PM = 0.4. It is so close in fact that the error 
incurred by assuming the asymptotic forms to hold never exceeds a factor of 2. 
Below a value of PM = 0.3, only the first mode is important and that is the range 
treated by ( 2 5 )  and (36). 

5. Conclusions 
The containment of turbulent flow within a hard-walled pipe has a marked 

effect on its radiation efficiency. The sound generated by large-scale turbulence, 
highly correlated across the pipe, is in a form of a plane wave, and increases with 
the sixth power of flow velocity. It thus exceeds the energy radiated by the same 
turbulence in free space by a factor The same is true of the sound field 
generated by small-scale turbulence of low frequency when only the plane wave 
propagates, all other modes decaying exponentially with distance. In  both these 
plane wave situations, if the turbulence is moving upstream relative to the flow, 
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as it would be if generated by flow past fixed obstructions, convective effects 
result in a large increase in the acoustic power output, together with a strong 
tendency for most of the sound to propagate upstream against the flow. Small- 
scale turbulence of higher frequency excites an increasing number of modes until 
at very high frequency effectively all modes are excited and the turbulence 
radiates in precisely the same way as it would in free space. Again convective 
effects increase the power output very substantially, but in this case the energy 
is approximately evenly divided into downstream and upstream travelling 
components. Again, relative to the flow, the majority of the field propagates 
upstream, but not all of it rapidly enough to avoid being convected downstream 
by the mean flow. A detailed computation of the field radiated by small-scale 
isotropic turbulence that moves with the flow indicates that the asymptotic 
high frequency result is effectively established when about 20 modes are signi- 
ficantly excited, and this occurs when the characteristic frequency of the tur- 
bulence is about ten times the k s t  cut off frequency of the pipe. On the other 
hand an assumption that the asymptotic form is established immediately the 
second mode supports a significant fraction of the energy, that is a t  ,@M = 0.4, 
results in a very small error, being an underestimate of the actual power by a 
factor always less than 3 db. It is difficult to speculate on the magnitude of the 
scale coefficients a and /3 because they have not yet been measured in pipe flows. 
However, an order of magnitude estimate might be obtained by taking their 
relative measure as equal to that found in shear flow turbulence where /3 N 8.. 
Then, if the eddy dimensions are about &th of the pipe width, CL = 10-1, ,@ N 2. 
In  that case it can be seen from figure 2 that an eighth power dependence on 
flow velocity is effectively established above a flow Mach number of 0.2 below 
which the sound power varies as the sixth power of velocity. 

This research was carried out under the Naval Ship Systems Command General 
Hydromechanics Research Programme administered by the Naval Ship Research 
and Development Centre under Contract N62558-4996. 

REFERENCES 

CURLE, N. 1955 The influence of solid boundaries upon Aerodynamic sound. Proc. Roy. 

DAVIES, P. 0. A. L., FISHER, M. J. & BARRATT, M. J. 1963 The characteristics of the 

FFOWCS WILLIAMS, J. E. 1963 The noise from turbulence convected a t  high speed. Phil. 

LIGHTHILL, M. J. 1952 On sound generated aerodynamically. Part I. General Theory. 

MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics. New York: McGraw- 

Soc. A 231. 

turbulence in the mixing region of a round jet. J .  Fluid Mech. 15, 337. 

Trans. Roy. Soc. A 255, 469. 

Proc. Roy. SOC. A 211, 564. 

Hill. 




